Skip to main content
The Advanced Research API endpoint provides a sophisticated multi-agent research system that combines director and worker agents to conduct comprehensive research tasks. The system leverages external search capabilities through the Exa search tool and supports both single and batch processing modes.

Key Features

  • Multi-Agent Architecture: Director-worker agent pattern for coordinated research
  • Configurable Models: Support for multiple LLM providers and models
  • Image Support: Optional image inputs for visual research tasks
  • Batch Processing: Execute multiple research sessions in parallel
  • Cost Tracking: Transparent token usage and pricing calculation
  • Credit System: Integrated billing and credit deduction
  • External Search: Exa search tool integration for web research

Architecture

The Advanced Research system follows a director-worker pattern:
  1. Director Agent: Orchestrates the research process, breaks down tasks, and synthesizes final results
  2. Worker Agents: Execute specific research tasks assigned by the director
  3. Search Integration: Exa search tool provides external data sources
  4. Cost Management: Token counting and credit deduction system
[Client Request] 

[Input Validation]

[AdvancedResearch Instance]

[Director Agent] ← → [Worker Agents] ← → [Exa Search]

[Result Processing]

[Cost Calculation & Credit Deduction]

[Response]

Configuration

AdvancedResearchConfig

The configuration schema defines all parameters for the research session:
class AdvancedResearchConfig(BaseModel):
    name: Optional[str] = "Advanced Research"
    description: Optional[str] = "Advanced Research"
    worker_model_name: Optional[str] = "gpt-4.1"
    director_agent_name: Optional[str] = "Director-Agent"
    director_model_name: Optional[str] = "gpt-4.1"
    director_max_tokens: Optional[int] = 8000
    max_loops: Optional[int] = 1
    director_max_loops: Optional[int] = 1
    exa_search_num_results: Optional[int] = 2
    exa_search_max_characters: Optional[int] = 100

Configuration Parameters

ParameterTypeDefaultDescription
namestring”Advanced Research”Session identifier name
descriptionstring”Advanced Research”Session description
worker_model_namestring”gpt-4.1”Model for worker agents
director_agent_namestring”Director-Agent”Director agent identifier
director_model_namestring”gpt-4.1”Model for director agent
director_max_tokensinteger8000Maximum output tokens for director
max_loopsinteger1Number of research loops
director_max_loopsinteger1Maximum loops for director
exa_search_num_resultsinteger2Number of search results
exa_search_max_charactersinteger100Max characters per search result

Input/Output Schemas

Input Schema

class AdvancedResearchInputSchema(BaseModel):
    config: Optional[AdvancedResearchConfig]
    task: Optional[str]
    img: Optional[str] = None

Required Fields

  • config: Research configuration object
  • task: The research task description

Optional Fields

  • img: Base64 encoded image or image URL for visual research tasks

Output Schema

class AdvancedResearchOutputSchema(BaseModel):
    id: Optional[str]
    name: Optional[str]
    description: Optional[str]
    outputs: Optional[Any]
    timestamp: Optional[str]
    sources: Optional[int]
    characters_per_source: Optional[int]
    usage: Optional[dict]

Response Fields

FieldTypeDescription
idstringUnique session identifier
namestringSession name from config
descriptionstringSession description
outputsanyFinal research results
timestampstringISO timestamp of completion
sourcesintegerNumber of sources used
characters_per_sourceintegerCharacters per source
usageobjectToken usage and cost breakdown

Pricing and Cost Management

Pricing Structure

The system implements a tiered pricing model:
  • Input Tokens: $20 per million tokens
  • Output Tokens: $60 per million tokens

Token Counting

The system calculates input tokens from:
  • Configuration name and description
  • Task description
  • Director agent prompt (550 tokens baseline)
  • Worker agent prompts (500 tokens × 5 agents baseline)
Output tokens are counted from the final research output.

Validation and Error Handling

Input Validation

The system validates three critical requirements:
  1. Worker Model Name: Must be specified
  2. Director Model Name: Must be specified
  3. Max Loops: Must be greater than 0
def validate_input_schema(input_schema: AdvancedResearchInputSchema):
    if input_schema.config.worker_model_name is None:
        raise HTTPException(
            status_code=422,
            detail={
                "error_code": "ADVANCED_RESEARCH_MISSING_WORKER_MODEL_NAME",
                "message": "Worker model name is required..."
            }
        )
    # Additional validations...

Error Types

Error CodeHTTP StatusDescription
ADVANCED_RESEARCH_MISSING_WORKER_MODEL_NAME422Worker model not specified
ADVANCED_RESEARCH_MISSING_DIRECTOR_MODEL_NAME422Director model not specified
ADVANCED_RESEARCH_INVALID_MAX_LOOPS422Invalid max_loops value
AdvancedResearchRunError500Runtime execution error

API Endpoints

Single Research Session

Endpoint: POST /v1/advanced-research/completions Headers:
Content-Type: application/json
x-api-key: YOUR_API_KEY
Request Body:
{
  "config": {
    "name": "Market Research",
    "description": "AI market analysis",
    "worker_model_name": "gpt-4.1",
    "director_model_name": "gpt-4.1",
    "max_loops": 1
  },
  "task": "Analyze current AI market trends"
}
Response:
{
  "id": "uuid-string",
  "name": "Market Research",
  "description": "AI market analysis",
  "outputs": "Research results...",
  "timestamp": "2024-01-01T00:00:00Z",
  "sources": 2,
  "characters_per_source": 100,
  "usage": {
    "input_tokens": 1500,
    "output_tokens": 800,
    "total_tokens": 2300,
    "total_cost_usd": 0.078
  }
}

Batch Research Sessions

Endpoint: POST /v1/advanced-research/batch/completions Request Body:
{
  "input_schemas": [
    {
      "config": { /* config 1 */ },
      "task": "Task 1"
    },
    {
      "config": { /* config 2 */ },
      "task": "Task 2"
    }
  ]
}
Response: Array of individual research session results.

Usage Examples

Basic Research Example

import requests
import os
from dotenv import load_dotenv

load_dotenv()

def run_basic_research():
    api_url = "http://localhost:8080"
    api_key = os.getenv("SWARMS_API_KEY")
    
    payload = {
        "config": {
            "name": "Healthcare AI Research",
            "description": "Research on AI applications in healthcare",
            "worker_model_name": "gpt-4.1",
            "director_model_name": "gpt-4.1",
            "max_loops": 1
        },
        "task": "What are the main benefits of using AI in healthcare?"
    }
    
    headers = {
        "Content-Type": "application/json",
        "x-api-key": api_key
    }
    
    response = requests.post(
        f"{api_url}/v1/advanced-research/completions",
        json=payload,
        headers=headers,
        timeout=300.0
    )
    
    return response.json()

Advanced Configuration Example

def run_advanced_research():
    payload = {
        "config": {
            "name": "Deep Market Analysis",
            "description": "Comprehensive market research with multiple sources",
            "worker_model_name": "claude-sonnet-4-20250514-20241022",
            "director_agent_name": "Research-Director",
            "director_model_name": "gpt-4.1",
            "director_max_tokens": 12000,
            "max_loops": 3,
            "director_max_loops": 2,
            "exa_search_num_results": 5,
            "exa_search_max_characters": 500
        },
        "task": "Conduct comprehensive analysis of renewable energy market trends, including technological innovations, market size, key players, and growth projections for 2024-2026"
    }
    
    # Make request...

Image-Based Research Example

def run_image_research():
    payload = {
        "config": {
            "name": "Visual Analysis Research",
            "description": "Research based on visual content",
            "worker_model_name": "gpt-4-vision-preview",
            "director_model_name": "gpt-4.1"
        },
        "task": "Analyze this chart and provide insights on the data trends",
        "img": "..."
    }
    
    # Make request...

Async Example with httpx

import httpx
import asyncio

async def run_async_research():
    api_url = "http://localhost:8080"
    api_key = os.getenv("SWARMS_API_KEY")
    
    payload = {
        "config": {
            "name": "Async Research",
            "worker_model_name": "gpt-4.1",
            "director_model_name": "gpt-4.1"
        },
        "task": "Research task description"
    }
    
    headers = {
        "Content-Type": "application/json",
        "x-api-key": api_key
    }
    
    async with httpx.AsyncClient(timeout=300.0) as client:
        response = await client.post(
            f"{api_url}/v1/advanced-research/completions",
            json=payload,
            headers=headers
        )
        return response.json()

# Run async
result = asyncio.run(run_async_research())

Batch Processing

Batch Request Structure

class BatchedAdvancedResearchInputSchema(BaseModel):
    input_schemas: Optional[List[AdvancedResearchInputSchema]]

Batch Processing Benefits

  1. Parallel Execution: Multiple research sessions run concurrently
  2. Cost Efficiency: Shared infrastructure overhead
  3. Consistent Configuration: Apply similar configs across multiple tasks

Batch Example

def run_batch_research():
    batch_payload = {
        "input_schemas": [
            {
                "config": {
                    "name": "Tech Research 1",
                    "worker_model_name": "gpt-4.1",
                    "director_model_name": "gpt-4.1"
                },
                "task": "Research emerging AI technologies"
            },
            {
                "config": {
                    "name": "Tech Research 2", 
                    "worker_model_name": "gpt-4.1",
                    "director_model_name": "gpt-4.1"
                },
                "task": "Research blockchain applications"
            },
            {
                "config": {
                    "name": "Tech Research 3",
                    "worker_model_name": "gpt-4.1", 
                    "director_model_name": "gpt-4.1"
                },
                "task": "Research quantum computing progress"
            }
        ]
    }
    
    response = requests.post(
        f"{api_url}/v1/advanced-research/batch/completions",
        json=batch_payload,
        headers=headers,
        timeout=600.0  # Longer timeout for batch
    )
    
    return response.json()

Best Practices

Configuration Optimization

  1. Model Selection:
    • Use gpt-4.1 or claude-sonnet-4-20250514 for complex research
    • Consider gpt-3.5-turbo for simpler tasks to reduce costs
    • Match director and worker models for consistency
  2. Loop Configuration:
    • Start with max_loops: 1 for simple tasks
    • Increase loops for complex, multi-stage research
    • Monitor costs as loops multiply token usage
  3. Search Configuration:
    • Adjust exa_search_num_results based on research depth needed
    • Increase exa_search_max_characters for detailed source content
    • Balance thoroughness with cost and processing time

Task Definition

  1. Clear Objectives: Define specific, measurable research goals
  2. Scope Boundaries: Limit task scope to avoid excessive token usage
  3. Context Provision: Include relevant background information
  4. Output Format: Specify desired output structure when needed

Error Handling

def robust_research_call(payload):
    try:
        response = requests.post(
            f"{api_url}/v1/advanced-research/completions",
            json=payload,
            headers=headers,
            timeout=300.0
        )
        response.raise_for_status()
        return response.json()
        
    except requests.exceptions.Timeout:
        return {"error": "Request timed out"}
    except requests.exceptions.HTTPError as e:
        return {"error": f"HTTP error: {e.response.status_code}"}
    except requests.exceptions.RequestException as e:
        return {"error": f"Request failed: {str(e)}"}
    except Exception as e:
        return {"error": f"Unexpected error: {str(e)}"}

Troubleshooting

Common Issues

  1. Missing Model Names: Ensure both worker and director models are specified
  2. Invalid Max Loops: Verify max_loops is greater than 0
  3. Authentication Errors: Check API key validity and format
  4. Timeout Issues: Increase timeout for complex research tasks
  5. Credit Deduction Failures: Verify sufficient credits in account

Support

For additional support:
  • Review error messages for specific error codes
  • Check logs for detailed execution information
  • Contact support through Swarms Support
  • Refer to the main API documentation for general issues

Model Selection Guidelines

  1. Research Complexity: More complex models for sophisticated analysis
  2. Cost Considerations: Balance capability with cost requirements
  3. Response Time: Consider model speed for time-sensitive tasks
  4. Special Features: Use vision-capable models for image analysis
This documentation provides comprehensive coverage of the Advanced Research API functionality, configuration options, and best practices for enterprise implementation.
I